

Bewertungskonzepte für sichere Wasserstofftechnologien

Fraunhofer-Institut für Werkstoffmechanik IWM

C. Fischer, K. Wackermann, H. Oesterlin, A. Muth, F. Schweizer, T. Michler, I. Varfolomeev, M. Schmitz-Elbers, <u>C. Schweizer</u>

Suisse TP Innovation trifft Werkstoffkompetenz 25.10.2023, Freiburg im Breisgau

wasserstoff@iwm.fraunhofer.de

Fraunhofer IWM: Wir machen Werkstoffe berechenbar

Unsere Alleinstellung: Kombination von experimenteller und computergestützter Werkstoffmechanik

Das Verhalten von Produkten im Lebenszyklus aufklären, bewerten, vorhersagen Werkstoffgerechte Produkt- und Prozessentwicklung

Digitale Repräsentation von Werkstoffen

Unsere strategischen Themen

Werkstoffe im Kontakt mit Wasserstoff

u.a. Bruchmechanik, Restlebensdauerbewertung, Ermüdung, Crashsicherheit, Reibung & Verschleiß

u.a. Massivumformung, Pulvertechnologie, Glasformgebung und -trennen, Additive Fertigung

Werkstoffe unter Wasserstoffeinfluss berechenbar machen Qualifizierung der Erdgasinfrastruktur für die Wasserstoffspeicherung

Schweißeigenspannungsmessungen durch das Fraunhofer IWM an einem geschweißten Kugelventil und Rohrleitungen

Werkstoffe unter Wasserstoffeinfluss berechenbar machen Wozu benötigt man das Fraunhofer IWM?

Bündelung von Expertise und Infrastruktur beim Thema Wasserstoff

*H*₂-*Hochdrucklabor* Autoklaven bis 1000 bar – Hohlprobentechnik Beladungstechnik

*H*₂-*Tribolabor* Modellierung von Tribokontakten –
 Schmierstoffbewertung – Barriereschichten

Das Fraunhofer IWM Wasserstofflabor

H₂-Mikrolabor

Aufklärung wasserstoffinduzierter Schädigungsprozesse an mikroskaligen Proben

H₂-Simulabor

Multiskalensimulation von Quantenphysik bis Kontinuumsmechanik und Bauteilberechnung

H₂-Schadenslabor

Schädigungsmechanismen – Schadensvermeidung - Mikrostrukturanalytik

Werkstoffe unter Wasserstoffeinfluss berechenbar machen

Der große Bedarf an Werkstoffdaten erfordert Skalierung der Druckwasserstoffprüfkapazitäten

1000 bar Autoklav

ca. 1.000.000 €

Miniautoklaven

ca. 120.000 €

Ø6±0,02 Hohlprobenaufbau

Die Hochdruckprüfung

*H*₂-*Hochdrucklabor* Autoklaven bis 1000 bar – Hohlprobentechnik - Beladungstechnik

- Prüfung unter Hochdruckwasserstoffatmosphäre im Autoklaven an Standardproben (a).
- Prüfung an Hohlproben (mit H₂-Füllung) in normaler Laborumgebung (b).
- Prüfung an mit Wasserstoff vorbeladenen Standardproben in normaler Laborumgebung (materialabhängig), (c).

Die Hochdruckprüfung

Zugversuche: Vergleich zwischen Hohl- und Vollproben

H₂-Hochdrucklabor
Autoklaven bis 1000 bar – Hohlprobentechnik - Beladungstechnik

 Kleine Unterschiede bei der Bruchdehnung.

T. Michler et al., Int. J. Hydrogen Energy (2022) & (2023)

Die Hochdruckprüfung

Zugversuche: Vergleich zwischen Hohl- und Vollproben

Zugversuche

 Werkstoffkennwerte von Voll- und Hohlproben werden systematisch verglichen

Bruchflächen am Beispiel 1.4301

H₂-Hochdrucklabor

Autoklaven bis 1000 bar – Hohlprobentechnik - Beladungstechnik

Die Hochdruckprüfung Ermüdungsversuche an Hohlproben

Niederzyklische Ermüdungsversuche an X56-Pipelinestahl

- Vergleichbare Lebensdauern an Voll- und Hohlproben
- Lebensdauer wird durch 50 bar Wasserstoffdruck reduziert
- Die Lebensdauerreduktion unter Wasserstoff nimmt mit der Belastung zu
- Spürbare Streuung der Hohlprobenversuche mit Wasserstoff
- Bohrungsdurchmesser hat keinen Einfluss (sowohl an Luft als auch bei Wasserstoff)

*H*₂-*Hochdrucklabor* Autoklaven bis 1000 bar – Hohlprobentechnik - Beladungstechnik

Die Mikroprobenprüfung

- Zug-, Biege- und Biegeresonanzversuche an Mikroproben
- Probenquerschnitt $\leq 1 \text{ mm}^2$ (z.B. 400 μm x 200 μm)
- Charakterisierung kleiner Bauteile und ortsaufgelöst (große Bauteile)
- Entwicklung und Optimierung mikromechanischer Versuchsstände
- Option 1: Mikroproben vorbeladen mit Druckwasserstoff
- Option 2: In-situ unter Druckwasserstoff (ab Oktober 2023)

Mikroprobengeometrien (Biegeresonanz/ Biegung / Zug)

Ortsaufgelöste Bestimmung mechanischer Eigenschaften

H2-Mikroautoklav (Mikroprobenversuche unter Druckwasserstoff)

Mikromechanische Charakterisierung verschiedener Schweißnahtbereiche

Werkstoffe unter Wasserstoffeinfluss berechenbar machen

Beispiel: Kopplung von Diffusion und mechanischer Beanspruchung auf Gefügeebene

Wasserstoffdiffusion und -versprödung sind belastungsabhängig

Fragen

- Wo reichert sich der Wasserstoff im Gefüge an?
- Welche Rolle spielen
 Trapping-Mechanismen?
 ("Wasserstofffallen oder -senken")
- Wie ist die Interaktion zwischen einem wachsenden Ermüdungsriss und der Wasserstoffdiffusion in Abhängigkeit von Druck, Frequenz, Belastung, Diffusionseigenschaften...?

Werkstoffe unter Wasserstoffeinfluss berechenbar machen Beispiel: Kopplung von Diffusion und mechanischer Beanspruchung auf Gefügeebene

Quelle: A. Muth et al., Hydrogenious Conference, 2023

Werkstoffe unter Wasserstoffeinfluss berechenbar machen

Vorhersage der Ermüdungseigenschaften

Zusammenhänge zwischen Anrisslebensdauer und Risswachstum

- LCF-Bereich: Anrisslebensdauer ist mikrorisswachstumsdominiert
- Mikroriss startet bei ca. 10 -50 μm und wächst bis ca. 1 mm
- Wenn man weiß wie Mikro- und Makrorisswachstum unter Wasserstoffeinfluss zusammenhängen kann aus einer (Makro)Risswachstumskurve die LCF-Lebensdauer berechnen

$$N_a = \int_{a_0}^{a_f} \frac{dn}{da} \cdot da$$

Thesen

- Wer Mikrorisse versteht, versteht auch LCF-Lebensdauern
- Mikro- und Makrorisse folgen an Luft den annähernd gleichen Gesetzen (elastisch-plastische Bruchmechanik)

Werkstoffe unter Wasserstoffeinfluss berechenbar machen

Vorhersage der Ermüdungseigenschaften

Zusammenhänge zwischen Anrisslebensdauer und Risswachstum

 Wir übertragen Kurzrissmodelle aus dem Hochtemperaturbereich auf Wasserstoff

- Benötigte Daten
 - Ermüdungsdaten an Luft
 - Risswachstumskurven an Luft und H2

Fallbeispiel: Röhrenspeicher Anwendung der ASME B31.12

Ziel: Wie konservativ ist das Regelwerk im Vergleich zu werkstoffspezifischen Kennwerten?

Photo: Copyright Saarstahl AG / Dirk Martin

Fallbeispiel: Röhrenspeicher Anwendung der ASME B31.12

Ziel: Wie konservativ ist das Regelwerk im Vergleich zu werkstoffspezifischen Kennwerten?

Fallbeispiel: Röhrenspeicher Anwendung der ASME B31.12

Ziel: Wie konservativ ist das Regelwerk im Vergleich zu werkstoffspezifischen Kennwerten?

- ASME B31.12: werkstoffunspezifisch und konservativ
- Amaro et al. (2018): werkstoffspezifisch für X52

Amaro et al. (2018), Journal of Pressure Vessel Technology 140, 021403 https://doi.org/10.1115/1.4038824

Werkstoffe unter Wasserstoffeinfluss berechenbar machen Reifegrad unserer aktuellen FuE-Themen

Diese Arbeit wurde vom Bundesministerium für Bildung und Forschung (BMBF) unter den Förderkennzeichen 03HY202F (TransHyDE) und 03HY301F (H2Mare) finanziell unterstützt

Vielen Dank für Ihre Aufmerksamkeit!

Fragen ?

Antworten:

wasserstoff@iwm.fraunhofer.de

Dr. Christoph Schweizer Fraunhofer IWM Wöhlerstraße 11 79108 Freiburg

Telefon +49 (0)761 5142-382 christoph.schweizer@iwm.fraunhofer.de

Wasserstoffinduzierte Ermüdung von tribologischen Kontakten

- Ziel: Lebensdauererhöhung von tribologischen Systemen unter erhöhten Wasserstoffkonzentrationen
- Wälz- und Gleitversuche unter Wasserstoffatmosphäre mit bis zu 300 bar
- Untersuchungen zum tribologischen Verhalten von Werkstoffen, Schmierstoffen, Beschichtungen in Wasserstoffatmosphäre

Barrierewirkung von Schichtsystemen

- Gas-Permeationsprüfstand
- Ermittlung von Diffusionskoeffizienten
- Berechnung der Permeationsreduktionsfaktoren von Wasserstoffbarriereschichten
- Ausstattungsdetails:
 - UHV-Technologie f
 ür hochsensitive Gasanalyse mittels Quadrupolmassenspektrometrie (QMS)
 - Verwendung des H₂-Isotops Deuterium (D₂) zur zweifelsfreien Detektion des Permeats
 - Probentemperatur: 30°C < T < ca. 300°C
- Probenmaterial:
 - Metallbleche (Ø 33mm, 0,2 0,5 mm Dicke)
 - Polymerplatten (Ø 48mm, 1-2 mm Dicke)

H₂-Tribolabor Modellierung von Tribokontakten – Schmierstoffbewertung – Barriereschichten

1E-7

1E-8

1E-10

1E-13

1E-14

. 0.5

Y 1E-9 1E-10 1E-11 D-[∞] 1E-12

Probabilistische Bewertung von H2-Hochdrucktanks

- Entwicklung von CFK H₂-Hochdrucktanks (1000 bar)
- Problemstellung:
 - inhärente, fertigungsbedingte Ungänzen in CFK-Mantel
 - bilden Ausgangspunkte f
 ür Versagen
 - stochastisch verteilt
- Lösung: probabilistisches Bewertungskonzept
 - \rightarrow Analyse und Mapping relevanter Ungänzen, stochastische Auswertung

Tomographieaufnahmen von Schlauchporen im Referenzmaterial [1]

H₂-Schadenslabor

Ausfallwahrscheinlichkeit und Berstdruck für verschiedenen Defektdichten

Probabilistische Verteilung unterschiedlicher Defekte in stochastischen Hüllensimulationen gewickelter H2-Hochdrucktanks.

[1] Kaufhold, C., Richter, F., Judt, P., Strohhäcker, J., Strubel, V., Jatzlau, P., Beckmann, C. & Schäuble, R. (2022). Challenges in the development of type 4-pressure vessels for high H2 storage densities. IKV Coll. (Aachen, September08, 2022, in German.

