Skip to content
        • Dr. Benedikt Moser

          Contact me

          Dr. Benedikt Moser

          CTO and Materials Expert

          Tel: +41 52 551 11 33
          Mail: CTO@suisse-tp.ch

        • Patrik Bachmann

          contact me

          Patrik Bachmann

          Laboratory Manager Chemical Analysis

          Tel: +41 52 551 11 69
          Mail: analytics@suisse-tp.ch

        • Dirk Nusshär

          Contact me

          Dr. Dirk Nusshär

          surfaces expert

          Tel: +41 52 551 11 37
          Mail: surfaces@suisse-tp.ch

  • packaging-
    development
    analyze, develop, optimize and
    test with regard to barrier properties

Physical-chemical ANALYTICS

CHEMICAL ANALYTICS
With cGxP and SAS for independent and reliable analysis results 

Typical applications range from analytical characterization to commercial release testing:

  • Chromatographic testing and purity determination of pharmaceuticals
  • Identification of unknowns
  • Determination of solvent residues
  • Particle size and zeta potential of nanoparticulated NBCDs
  • Elemental analysis in pharmaceutical products according to ICH Q3D
  • Analysis of commercial release
  • Analysis for validation of purification
  • Qualification of reference materials
  • Digestion techniques
    • Pressure-assisted microwave digestion
    • Melt digestion
    • Heavy metal digestion
    • Customized digestion techniques

Definition Analyse Chemie

Die Analytische Chemie beschäftigt sich mit der qualitativen und quantitativen Analyse von chemischen und biochemischen Substanzen. Sie spielt in fast allen chemischen Teildisziplinen eine bedeutende Rolle, zum Beispiel in der Lebensmittel- und Umweltanalytik, im großen Feld der klinisch-chemischen Analytik (z. B. von Stoffwechselparameters oder Tumormarkern), in der Qualitätskontrolle industrieller Produkte wie z. B. von Metallen und Legierungen, von Pharmazeutika und chemischen Produkten, in Schadstoffanalysen (z. B. Lösungsmittel, Acrylester oder Chlor), von Sauerstoff (mit Hilfe der Lambda-Sonde), Schwefeldioxid oder Stickoxiden in Autoabgasen, oder in der Analyse von Oberflächen. Suisse Technology Partners bietet sowohl qualitative, quantitative als auch strukturanalytische Methoden an.

  • Die qualitative Analyse fragt nach dem Was im Sinne von „Welcher Stoff ist das?“ Liegt nicht nur eine chemische Verbindung vor, sondern ein Gemisch vor, lautet die Frage „Welche (bio)chemischen Substanzen sind in der Probe vorhanden?“. Grundaufgabe der qualitativen Analyse ist also die Identifikation von Stoffen, ggf. nach vorheriger Anreicherung, Entfernung störender Stoffe, oder nach Auftrennung.
  • Die quantitative Analyse fragt dagegen nach dem Wie viel, d. h. danach, welche Menge eines Stoffes (des Analyten) in einem Gemisch (der Probe) vorhanden ist.
    Was „wie viel“ genau bedeuten soll, ist übrigens gar nicht so trivial. Meist ist hier die Stoffmengenkonzentration gemeint, also die Anzahl Moleküle einer Substanz in der Probe. Dort, wo keine einzelnen Moleküle bestimmt werden sollen, wie z. B. bei der Bestimmung des gesamten Gehalts an Protein oder Fett wird eine Massenkonzentration angegeben.
  • Die Strukturanalyse fragt nach dem molekularen Aufbau einer Substanz (der chemischen Strukturformel oder der Kristallstruktur)

Für die Analyse sollte die zu bestimmende Substanz idealerweise bekannt sein, sonst wird möglicherweise gar nicht nach ihr gesucht. Qualitative und quantitative Analytik werden oft aufeinander aufbauend durchgeführt. Voraussetzung für eine qualitative Analyse ist eine genügend große Menge Analyt in der Probe, abhängig von der Nachweisgrenze der verwendeten Methode. Eine Sonderstellung nimmt die Strukturbestimmung ein. Mit dem Aufkommen moderner Kopplungsmethoden werden aber Struktur-bestimmende Analyseverfahren auch in der qualitativen und quantitativen Analytik immer wichtiger.

Neben der Bestimmung einzelner Stoffe eines Gemischs werden oftmals Summenparameter bestimmt – insbesondere wenn es um schnelle Grundaussagen über eine Probe geht. Beispiele sind der TOC (Total Organic Carbon, ein Maß für den Gesamtgehalt organischer Verbindungen) oder der CSB (Chemischer Sauerstoffbedarf als Maß für die Gesamtmenge an oxidierbaren Substanzen).

In der Polymeranalytik ist speziell die Molekulargewichtsverteilung der Polymere von Interesse, da Polymere niemals aus Molekülen gleicher Molekülmasse bestehen, sondern um einen statistischen Mittelwert verteilt sind; diese mittlere Molekülgröße beziehungsweise die Molekulargewichtsverteilung sind hier spezifische Eigenschaften des Polymers.

Schließlich gibt es noch die verschiedenen Verfahren der Oberflächenanalytik. Diese meist instrumentellen analytischen Methoden sind besonders sensitiv und zugleich selektiv. Beispiele für diese Methoden sind die Röntgen-Photoelektronen-Spektroskopie (XPS).

Nass-chemische Analysemethoden

Die nass-chemische Analytik bedient sich bei der Identifikation und Quantifizierung überwiegend chemischer Methoden unter zur Hilfenahme einfacher physikalischer Phänomene (Gewicht, farbige Erscheinung). Diese Methoden haben, mit Ausnahme sogenannter Vor-Ort-Tests, keine große Bedeutung mehr. Beispiele für qualitative Methoden sind:

  • Nachweisreaktionen
    farbige Komplexbildungsreaktionen oder Niederschlägen durch Fällungsreaktionen
  • Flammenfärbung
    Beispiel: viele Metallionen färben eine Bunsenbrennerflamme in charakteristischer Weise

Aber auch quantitative Bestimmungen lassen sich rein chemisch durchführen:

  • Photometrie
    Die Stärke der Färbung der Lösung mit dem Analyten wird mit der Färbung von Lösungen bekannter Konzentration verglichen. Bei Analyten ohne eigene, charakteristische Färbung kann durch eine chemische Reaktion eine farbige Verbindung erzeugt werden.
  • Titration (Volumetrie)
    Zu einer Lösung des Analyten wird die Lösung eines Reaktionspartners bekannter Konzentration langsam zugegeben. Wenn der Analyt vollständig abreagiert ist, bewirkt der zugesetzte Reaktionspartner bzw. ein Indikator einen Farbumschlag, eine Niederschlagsbildung oder sonst ein deutlich sichtbares Ereignis. Aus dem Volumen der verbrauchten Lösung des Reaktionspartners kann man die Konzentration des Analyten errechnen.
  • Gravimetrie
    Der Analyt reagiert mit einem Reaktionspartner und bildet einen unlöslichen Niederschlag bekannter Zusammensetzung; aus dessen Gewicht wird die Analytmenge bestimmt (daher der Name: gravis ist Latein und bedeutet „schwer“).

instrumentelle analytik

Die Anzahl der Methoden der instrumentellen chemischen Analytik ist fast schon unüberschaubar geworden. Die Verfahren beruhen im Wesentlichen auf physikalischen Messprinzipien. Viele dieser Methoden sind sowohl für qualitative als auch quantitative Bestimmungen verwendbar. Auch hier nur einige Beispiele:

  • Spektroskopie
    Hier wird die Wellenlängen-abhängige Absorption oder Emission von elektromagnetischer Strahlung benutzt, die für den jeweiligen Analyten charakteristisch ist. Elektromagnetische Strahlung kann dabei sichtbares oder UV-Licht sein (UV/VIS-Spektroskopie), infrarotes Licht (IR-Spektroskopie), Röntgenstrahlung (Röntgenphotoelektronenspektroskopie (XPS) oder Röntgen-Fluoreszenz Analyse (RFA)). Zur quantitativen Elementanalytik kommen hauptsächlich zum Einsatz Atomabsorptionsspektroskopie, Atomemissionsspektroskopie und induktiv gekoppelte Plasmen gekoppelt mit Optischer Emissionsspektroskopie (ICP-OES) oder gekoppelt mit Massenspektrometrie (ICP-MS).
  • Chromatographie
    Ziel ist hier die Trennung verschiedener Substanzen. Dazu wird das Analytgemisch in einem Lösungsmittel (mobile Phase) gelöst, das dann eine feste Trägersubstanz (stationäre Phase) durchströmt (Flüssigchromatographie). Alternativ kann das Analytgemisch auch verdampft an der stationären Phase vorbeigeführt werden (Gaschromatographie). Durch unterschiedlich starke Wechselwirkungen mit der stationären Phase werden manche Analyten schnell, andere langsam in Flussrichtung transportiert. Die Wanderungsgeschwindigkeit ist für den jeweiligen Analyten charakteristisch.

Spektroskopische Methoden haben über ihre Anwendung in der klassischen Analytik hinaus erhebliche Bedeutung für die Strukturaufklärung chemischer Verbindungen. Insbesondere die Kombination mehrerer spektroskopischer Methoden ist vor allem in der Organischen Chemie ein sehr effektives Werkzeug. Daneben spielt die Röntgenstrukturanalyse eine bedeutende Rolle bei der Aufklärung von Kristallstrukturen.

In der Praxis finden sich sehr oft Überschneidungen von nass-chemischer und instrumenteller Analytik: Häufig wird eine Probe zunächst nass-chemisch aufbereitet, um für eine instrumentelle Methode verwendbar zu sein. In der Spurenanalytik ist oft eine vorherige Aufkonzentration erforderlich. Viele Analyte müssen chemisch modifiziert werden (Derivatisierung oder Markierung), damit sie instrumentell analysiert werden können.

Anwendung chemischer Analyse

Die vielen verschiedenen Analysemethoden erlauben eine Vielzahl von Anwendungen, beispielsweise:

  • Besonders in der Umwelt- und Lebensmittelanalytik wurden in den letzten Jahren enorme Fortschritte in der Leistungsfähigkeit analytischer Messmethoden und deren Nachweisgrenzen gemacht. Hier müssen Substanzen identifiziert und quantifiziert werden.
  • Bei der Herstellung chemischer, pharmazeutischer und kosmetischer Produkte sowie von Nahrungsmitteln sind im Rahmen der Qualitätskontrolle chemische Analysen unumgänglich.
  • Die Strukturaufklärung dient der Identifizierung neuer chemischer Verbindungen bei der chemischen Synthese oder bei der Erforschung neuer Naturstoffe.

Zur Überwachung von Produktionsverfahren unterscheidet man zwischen diskontinuierlicher und kontinuierlicher Analytik. Bei diskontinuierlichen Verfahren werden Proben entnommen und im Labor untersucht. Bei kontinuierlichen Verfahren wird die Probe dem Produktionsstrom entnommen und direkt einem Analysengerät zugeführt. Der ermittelte Messwert dient dabei zur Regelung, Überwachung oder zur Qualitätssicherung.

Dieser Artikel basiert auf dem Artikel Analytische_Chemie aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.

Contact me.

Patrik Bachmann

Laboratory Manager Chemical Analysis

Tel: +41 52 551 11 69
Mail: analytik@suisse-tp.ch